Entrer un problème...
Algèbre linéaire Exemples
[-36-11-71-223-12-458-4]⎡⎢⎣−36−11−71−223−12−458−4⎤⎥⎦
Étape 1
Write as an augmented matrix for Ax=0Ax=0.
[-36-11-701-223-102-458-40]⎡⎢
⎢⎣−36−11−701−223−102−458−40⎤⎥
⎥⎦
Étape 2
Étape 2.1
Multiply each element of R1R1 by -13−13 to make the entry at 1,11,1 a 11.
Étape 2.1.1
Multiply each element of R1R1 by -13−13 to make the entry at 1,11,1 a 11.
[-13⋅-3-13⋅6-13⋅-1-13⋅1-13⋅-7-13⋅01-223-102-458-40]⎡⎢
⎢⎣−13⋅−3−13⋅6−13⋅−1−13⋅1−13⋅−7−13⋅01−223−102−458−40⎤⎥
⎥⎦
Étape 2.1.2
Simplifiez R1R1.
[1-213-137301-223-102-458-40]⎡⎢
⎢⎣1−213−137301−223−102−458−40⎤⎥
⎥⎦
[1-213-137301-223-102-458-40]⎡⎢
⎢⎣1−213−137301−223−102−458−40⎤⎥
⎥⎦
Étape 2.2
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
Étape 2.2.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[1-213-137301-1-2+22-133+13-1-730-02-458-40]⎡⎢
⎢
⎢⎣1−213−137301−1−2+22−133+13−1−730−02−458−40⎤⎥
⎥
⎥⎦
Étape 2.2.2
Simplifiez R2R2.
[1-213-137300053103-10302-458-40]⎡⎢
⎢
⎢⎣1−213−137300053103−10302−458−40⎤⎥
⎥
⎥⎦
[1-213-137300053103-10302-458-40]⎡⎢
⎢
⎢⎣1−213−137300053103−10302−458−40⎤⎥
⎥
⎥⎦
Étape 2.3
Perform the row operation R3=R3-2R1 to make the entry at 3,1 a 0.
Étape 2.3.1
Perform the row operation R3=R3-2R1 to make the entry at 3,1 a 0.
[1-213-137300053103-10302-2⋅1-4-2⋅-25-2(13)8-2(-13)-4-2(73)0-2⋅0]
Étape 2.3.2
Simplifiez R3.
[1-213-137300053103-103000133263-2630]
[1-213-137300053103-103000133263-2630]
Étape 2.4
Multiply each element of R2 by 35 to make the entry at 2,3 a 1.
Étape 2.4.1
Multiply each element of R2 by 35 to make the entry at 2,3 a 1.
[1-213-1373035⋅035⋅035⋅5335⋅10335(-103)35⋅000133263-2630]
Étape 2.4.2
Simplifiez R2.
[1-213-137300012-2000133263-2630]
[1-213-137300012-2000133263-2630]
Étape 2.5
Perform the row operation R3=R3-133R2 to make the entry at 3,3 a 0.
Étape 2.5.1
Perform the row operation R3=R3-133R2 to make the entry at 3,3 a 0.
[1-213-137300012-200-133⋅00-133⋅0133-133⋅1263-133⋅2-263-133⋅-20-133⋅0]
Étape 2.5.2
Simplifiez R3.
[1-213-137300012-20000000]
[1-213-137300012-20000000]
Étape 2.6
Perform the row operation R1=R1-13R2 to make the entry at 1,3 a 0.
Étape 2.6.1
Perform the row operation R1=R1-13R2 to make the entry at 1,3 a 0.
[1-13⋅0-2-13⋅013-13⋅1-13-13⋅273-13⋅-20-13⋅00012-20000000]
Étape 2.6.2
Simplifiez R1.
[1-20-1300012-20000000]
[1-20-1300012-20000000]
[1-20-1300012-20000000]
Étape 3
Use the result matrix to declare the final solution to the system of equations.
x1-2x2-x4+3x5=0
x3+2x4-2x5=0
0=0
Étape 4
Write a solution vector by solving in terms of the free variables in each row.
[x1x2x3x4x5]=[2x2+x4-3x5x2-2x4+2x5x4x5]
Étape 5
Write the solution as a linear combination of vectors.
[x1x2x3x4x5]=x2[21000]+x4[10-210]+x5[-30201]
Étape 6
Write as a solution set.
{x2[21000]+x4[10-210]+x5[-30201]|x2,x4,x5∈R}